

Money on Chain

July 2019

By CoinFabrik

Introduction 3

Executive Summary 3

Contracts 3

Analyses performed 4

Detailed findings 5
Medium severity 5

Usage of array deletes may surpass gas limits 5
Minor severity 5

Conflicts on secure contract initialization 5
Storage variable with the same name 6
Old solidity version 6
Unhelpful variables names 6
Missing message in requires 7

Observations/Remarks 7
Upgradability 7

Conclusion 7

Appendix: Audited files 9

Appendix: Function Analysis 11
How to read the graphs 11
Fallback function 11
The mintBPro function 12
The mintBProx function 13
The mintDoc function 14
The redeemBPro function 14
The redeemBProx function 15
The redeemFreeDoc function 15

Introduction
CoinFabrik was asked to audit the contracts for the Money On Chain project. We will
provide an executive summary of our discoveries, a short description of the project,
the methodology used, the details of our findings and will finish with our conclusion
of the code audited.
There are two appendices that include the listing of contracts audited and our
analysis of the more important public functions of the contracts.

Executive Summary
This is the second audit we perform on the code of the Money On Chain project.
We didn’t found issues with critical or high risk.
We found one issue with medium risk since it involves the contracts initialization.
From our tests it cannot be exploited. We notified the team so they document it
properly or make proper fixes.
There are a few minor issues/enhancements that do not affect the contract
functionality, for example contracts variable with helpful names, or some error
conditions which will not generate a message.

Contracts
The contracts audited are from the Money on Chain project. The audited contracts
consist of 3 distinct functionalities:

● Money On Chain: Money On Chain is a suite of smart contracts dedicated to
providing a bitcoin-collateralized stable-coin.

● Governance: A suite of smart contracts dedicated to providing a governance
system which is generic enough to work without knowing the system to be
governed.

● Oracle: Money on Chain USD-BTC price provider.

The following dependency graph shows the most important contracts from the
Money On Chain repository:

Note: The dashed lines indicate composition and the solid lines indicate inheritance.

Analyses performed
The following analyses were performed:

● Misuse of the different call methods: call.value(), send() and transfer().
● Integer rounding errors, overflow, underflow and related usage of SafeMath

functions.
● Old compiler version pragmas.
● Race conditions such as reentrancy attacks or front running.
● Misuse of block timestamps, assuming anything other than them being

strictly increasing.
● Contract softlocking attacks (DoS).
● Potential gas cost of functions being over the gas limit.
● Missing function qualifiers and their misuse.
● Fallback functions with a higher gas cost than the one that a transfer or send

call allows.
● Fraudulent or erroneous code.
● Code and contract interaction complexity.
● Wrong or missing error handling.

● Potential overuse of transfers in a transaction might produce unnecessary
fees. Withdrawal pattern should be used instead.

● Insufficient analysis of the function input requirements.

Detailed findings

Medium severity

Usage of array deletes may surpass gas limits
Array deletes have a linear cost even when they reimburse gas. Gas reimburse is
applied after the gas limit checks are done. Therefore even if the final gas calculation
lies below the gas limit the transaction may still fail if it surpassed the gas limit at
some point.
For this reason a delete operation can fail due to gas costs if the array is big enough
leading to DoS. There are two array deletes. One in ​MoCSettlement​:

function​ clear​()​ ​public​ onlyWhitelisted​(​msg​.​sender​)​ {
 ​delete​ redeemQueue;
}

and one in ​MoCBucketContainer​:

function​ clearBucketBalances​(​bytes32 bucketName​)​ ​public
onlyWhitelisted​(​msg​.​sender​)​ {
 ​MoCBucket​ storage bucket ​=​ mocBuckets​[​bucketName​];
 bucket​.​nBPro ​=​ ​0;
 ​delete​ bucket​.​activeBalances;
}

We recommend revising the gas cost of these operations. You may need to add
paging to these operations.

Minor severity

Conflicts on secure contract initialization
The project uses ZeppelinOS to allow upgrades without having to migrate contract’s
data. To achieve this it has inherit from ​Initializable​ from ZeppelinOS which provides
a modifier ​initializer​ for secure initialization of upgradeable contracts.

But it also inherits from ​MoCBase​, which provides a similar modifier ​onInitialization
to protect the contract against unsecure initialization.
This is an issue, I​nitializable​ assumes the first function to be called will be modified
by ​initializer​ to ensure that only that function will set ​initialized​ to ​true ​after
returning. But this is not what happens, as the first function is ​onInitialization​ which
later initializes ​Stoppable​ which is ​Initializable​. if another contract using ​Initializable
was inherited and initialized by this function, it will fail as Stoppable already set
initialized​ to ​true​.
We recommend only using the ZeppelinOS version to avoid these types of issues in
the future.

Storage variable with the same name
The MoC contract inherits from ​Initializable​ and ​MoCBase​. They use a variable with
the same name ​initialized​, it is private in ZeppelinOS but it is internal in MoCBase
which allows access from derived contracts. Since solidity allows multiple
inheritance and uses C3 linearization to determine the precedence order it is
possible that a change in the inheritance order in a derived contract will affect the
variable being referenced.
We suggest to always declare variables with the least possible scope, since
initialized​ is not used outside of MoCBase is better to declare it as private.

Old solidity version
The contracts for the Oracle project require solidity version 0.4.24 which was
released on May 2018. While we didn’t find any vulnerability related to using this
specific version, we recommend upgrading to a more recent version as many issues
and ambiguities get fixed in each release. If contracts can’t be upgraded to v0.5 you
should consider using v0.4.26 the latest version of the v0.4 branch.
For example in ​oracle\contracts\price-feed\price-feed.sol​ we have:

 pragma solidity ​ ​̂0.4​.​23;

Unhelpful variables names
There are a few instances in the Oracle contracts that variables and parameters
have names that are not helpful to understand the code.
For example function ​read()​ in ​lib/value.sol

 ​function​ read​()​ ​public​ view returns ​(​bytes32​)​ {
 bytes32 wut​;​ ​bool​ haz;
 ​(​wut​,​ haz​)​ ​=​ peek​();
 ​require​(​haz​,​ ​"haz-not"​);
 ​return​ wut;
 }

Missing message in requires
The ​require()​ statement has an optional message parameter that will return in case
of failure of the testing condition.

● oracle/contracts/lib/math.sol: the function ​add()​, ​sub()​ and ​mul()​ have a
require without message

 ​function​ add​(​uint​ x​,​ ​uint​ y​)​ ​internal​ pure returns ​(​uint​ z​)​ {
 ​require​((​z ​=​ x ​+​ y​)​ ​>=​ x​);
 }

Observations/Remarks

Upgradability
A major change introduced to Money On Chain in the second audit was to make
contracts upgradeable using ZeppelinOS.
One important benefit of this feature is that in case of bugs the contracts can be
upgraded without requiring changes to third party tools or intervention from users.
Also contracts data doesn’t have to be migrated lowering costs.
This feature has the drawback that there is one special account that control the
upgrade. It is possible for the entity controlling this account to upgrade the contracts
to a completely different version without approval from users.
There is also a new feature in the contracts called “changers” that have similar but
reduced implications. It allows the owner to grant permission to an arbitrary
contract, the changer, for a single transaction to make changes to storage variables
inside the project. That is, it allows the owner to modify multiple selected variables
on different contracts in a single transaction, instead of multiple ones which may
cause issues, by delegating the task to another deployed contract. Since the
whitelisting is decided by the owner at the moment of the transaction it can be used
to execute other changers that are not included in this audit. This is not considered a
vulnerability since the variables that changers are allowed to mutate are
pre-selected and it’s similar to having other privileged functions that can alter
parameters. It does however, increase the surface area for errors if not handled with
care.

Conclusion
We consider the contracts to be well written and abundantly documented, they use
reasonable recent version of popular frameworks like OpenZeppelin, ZeppelinOS
and most code use solidity compiler version 0.5.

We found a medium severity issue that is not exploitable regarding contracts
initialization. A few minor issues that do not affect functionality and are about code
style, using an old compiler version.
We also add the observation that upgradability can be considered a feature but it
can also be considered a bug because it allows the owner to arbitrarily change the
deployed bytecode.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Money On Chain project since CoinFabrik has not reviewed its
platform. Moreover, it does not provide a smart contract code faultlessness
guarantee.

Appendix: Audited files
The audited contracts grouped by project are:

Repository Contract
Previous

Audit

Governance ./Stopper/Stoppable.sol No

 ./Upgradeability/UpgradeDelegator.sol No

 ./ChangersTemplates/UpgraderTemplate.sol No

 ./Governance/Governor.sol No

 ./Governance/Governed.sol No

 ./Stopper/Stopper.sol No

 ./Governance/IGovernor.sol No

 ./Governance/ChangeContract.sol No

Oracle ./medianizer/medianizer.sol No

 ./lib/math.sol No

 ./lib/auth.sol No

 ./price-feed/price-feed.sol No

 ./lib/value.sol No

 ./lib/note.sol No

 ./authority/MoCGovernedAuthority.sol No

 ./price-feed/feed-factory.sol No

 ./lib/thing.sol No

 ./MocMedianizer.sol No

MoC ./MoCInrate.sol Yes

 ./MoCState.sol Yes

 ./base/PartialExecution.sol No

 ./MoC.sol Yes

 ./MoCHelperLib.sol Yes

 ./MoCSettlement.sol Yes

 ./changers/MocInrateChanger.sol No

 ./MoCEMACalculator.sol No

 ./changers/MocStateChanger.sol No

 ./changers/MocChanger.sol No

 ./MoCBucketContainer.sol Yes

 ./changers/MoCBucketContainerChanger.sol No

 ./changers/productive/PriceFeederAdder.sol No

 ./MoCExchange.sol Yes

 ./MoCBurnout.sol Yes

 ./changers/MoCSettlementChanger.sol No

 ./changers/productive/PriceFeederRemover.sol No

 ./changers/MoCStallSettlementChanger.sol No

 ./changers/MoCRestartSettlementChanger.sol No

 ./MoCBProxManager.sol Yes

 ./MoCLibConnection.sol Yes

 ./base/MoCConstants.sol No

 ./interface/BtcPriceFeed.sol No

 ./base/MoCBase.sol Yes

 ./interface/BtcPriceProvider.sol No

 ./MoCConverter.sol Yes

 ./base/MoCWhitelist.sol Yes

 ./base/MoCConnector.sol Yes

 ./token/OwnerBurnableToken.sol Yes

 ./test-contracts/RevertingOnSend.sol Yes

 ./token/BProToken.sol Yes

 ./token/DocToken.sol Yes

Appendix: Function Analysis
The following graphs show the flow of a set of important functions in the Money On
Chain project. Payable functions are the ones that send RBTC and Redeem
functions are used to withdraw RBTC from the contract, so they are the main
interaction point between the users and the project. These functions tend to be the
most sensible and complex ones since they need to handle the currency. As such,
they are the most prone to be vulnerable to attack vectors.
Since these functions span multiple contracts, which in turn implies a call stack per
contract, a graph is useful to show how many of these contracts are reached and
what specific functions they call for each case. The following graphs are meant to do
that, specifying which contract, functions and point of entry may be reached. Note
that this doesn’t necessarily happen in a single call, as some functions may not get
called depending on the state of the contracts and the input given.

How to read the graphs
The graphs are coded to ease the analysis:

● Internal calls are represented by black arrows. Internal calls do not make a
new call stack since they are made inside the same contract.

● External calls are represented by red arrows. External calls do create a new
call stack entry, as they need to call a contract on a different address.

● Functions are represented by black boxes ▭, and these are grouped into
individually deployed contracts represented by the blue boxes ​▭​.

● Modifiers are represented by house shape ⌂, these are solidity constructs that
decorate functions to provide functionality that is executed before and/or
after the function that’s being decorated.

● A dashed border implies the graph expands further from that node but was
removed to simplify the graph.

We include SVG version of the graphs in a separate attachment.

Fallback function
The fallback function simply adds more balance (RBTCs) to the system. It also
updates the bucket and the global variable which track this balance. It doesn’t create
any DoC token, BPro token or BProx instrument. Being simple, it doesn’t consume
much gas.

Figure 1: Fallback function.

The mintBPro function
This function creates BProTokens in exchange for RBTC and assigns them to the
user.
If a discount rate is applicable (Which happens when the ​BProDiscount ​state is set)
a limited amount of tokens is bought at a discounted price, and the rest of the RBTC
is used to buy tokens at a normal rate.
The contract MoCConverter is used as a bridge that combines the values saved in
MoCState and the functions in MoCHelperLib which contain the formulas. This
allows the contract to provide easy access to conversion functions, which are
needed to calculate the discount price. Even though there are many interactions
between the contracts, most of it is retrieving values that are needed for the
calculations, plus making the calculations themselves which reside in separate
contracts.
The BProToken is obviously called, to mint the corresponding tokens that were
bought, only the MoCExchange is able to mint tokens as it is the owner of the token
contract.
As with the fallback function, it also updates the bucket and the global variables
which track both the RBTC given to the contract and the tokens bought.
Since no part of this function varies with the input or the state, the gas consumption
should not vary greatly.

https://drive.google.com/open?id=1RgEPSi82th2C8pCWFtoDKXA-MihJPvs4

Figure 2: mintBPro function.

The mintBProx function
This function creates BProx in exchange of RBTC and assign them to the user.
The function ​mintBProx​ ​in MoC contract works as a frontend for MoCExchange
mintBProx​ ​which coordinates the calls to other contracts. It calculates the maximum
amount of BProx that can be calculated while maintaining the peg of the system and
the amount of interest to pay in advance for the allocated BProx instruments.
For the calculations the current state is consulted from several contracts MoCState
(bitcoin price, leverage level), MoCInrate (interest to pay), DocToken (token supply),
MoCSettlement (next settlement block), MoCBProxManager (amount of Doc, BPro
and RBTC in the bucket) and BtcPriceProvider (bitcoin price).
Once the amount of BProx and the interests are determined the allocation of BProx
and buckets updating is done in the function ​assignBProx​ ​and ​moveBtcAndDocs
from MoCBProxManager.
Other contracts like MoCInrate, MoCConverter, MoCHelperLib provide helper
functions with calculations for intermediate values.
Since no part of the function varies with the input or the state, the gas consumption
should be flat. The maximum cost will happen when an inexistent user in the system
mint BProx, this is because this task requires allocating storage. But in general the
contract mainly does calculations, so gas cost should not be high.

https://drive.google.com/open?id=1qtyPUbB_Du0WJ0gCG7upFsfyRQXLtkGc

Figure 3: mintBProx function.

The mintDoc function
This function creates new DoC tokens in exchange of RBTC and assign them to the
user.
The MoC contract will execute the function mintDoc in MoCExchange. It calculates
the maximum amount of Doc tokens allowed to create while it maintains the peg. If
the amount of RBTC sent is more than the amount needed to create new tokens it
will be returned to the user at the end.
The new tokens are assigned to the user calling mint from DocToken contract. The
minted Doc tokens are added to the bucket C0 in BProxManager contract.
Most of the functionality used in this call came from the MoCState contract to
consult the state of the system to determine the maximum amount of Doc token
available to the user. MoCHelperLib and MoCConverter contract provide helper
functions to intermediate calculations.
No large variations should be expected in gas cost, being the maximum when a new
user creates tokens because it involves allocating unused storage slots.

Figure 4: mintDoc function.

https://drive.google.com/open?id=1rgGndroOLt-D6B_UlXSxt5J3N9unsa7Y
https://drive.google.com/open?id=1PyyXjJIhlaGixPbRwoF9TAcGGK1QYXGz

The redeemBPro function
This function redeems BPro token for RBTC. In order to redeem BPro tokens the
system has to be in a healthy state with enough coverage.
The BPro tokens are burned and the RBTC is send to the user. A percentage of the
RBTC is discounted as commission and sent a special address.
The MoC contract uses MoCExchange to convert the BPro amount into RBTC and
the commission value. MoCExchange calculates the equivalent price of the BPro
tokens in RBTC from the state in the contract, making sure it respects the maximum
amount of BPro allowed and user balance. MoCExchange will burn the BPro tokens,
update the bucket state in MoCBProxManager and generate events signaling the
final values.
Once the tokens are burned MoC will send the amount of RBTC calculated to the
user and the commission to a separate address.
No large variations should be expected in gas cost since all the operations done by
the function have bounded gas use.

Figure 5: redeemBPro function.

The redeemBProx function
This function redeem BProx tokens for RBTC.
The MoC contract invokes redeemBProx function in MoCExchange. The function in
MoCExchange will compute the interest that will receive the user and the
commission it will pay. It will also burn the BProx tokens. It updates the bucket that
contained the redeemed BProx tokens.
The MoC contract will transfer the RBTC to the user and send the commission to the
proper address.

Figure 6: redeemBProx function.

https://drive.google.com/open?id=19CqXFvMo7vtqugzQXYEIFkV0v987s4vW
https://drive.google.com/open?id=18c8Ezf_SZZBS1uHEAbFXOgT9Uv6kxOuo

The redeemFreeDoc function
This function allows a user to redeem a selected amount of free Doc Tokens for
RBTC. In particular, free Doc Tokens are those found in bucket C0, if none are
available this function will not be able to redeem tokens. The tokens are burned and
the resulting RBTC are sent to the user. The function both collects an interest and a
commission from the aforementioned RBTC that is saved in the bucket and sent to a
commission address respectively.
To achieve that, it calls another function in MocExchange called redeemFreeDoc.
This function will return the amount to RBTC that need to be sent to the user and
the commission address respectively. In order to do so, it needs:

● To calculate how many tokens it will actually redeem and burn, since the
requested tokens are capped by both the balance and the amount of free doc
tokens. It does this by consulting both the bucket via MocState and the
balance of the user via the token contract.

● To convert the Doc value to RBTC, it does this by calling the MoCConverter
contract which will eventually go through MoCState and then the Oracle to
get the RBTC price in USD.

● To calculate and save the interest that it will subtract from the previous RBTC
conversion, it does this by calling the MocInrate contract.

● To calculate the commission that will subtract from the RBTC sent, it also
does this by calling the MocInrate contract.

● Actually burn the tokens, both from the balance and the bucket and return the
RBTC values accordingly.

Figure 7: redeemFreeDoc function.

https://drive.google.com/open?id=1NCeZ0Pwablsrj_MWVPGwD_APggiB7E3C

