

Polymath Core Audit

November 2019

By CoinFabrik

Polymath Core Audit
November 2019

Introduction 3

Summary 3

Severity Classification 5

Detailed findings 6

Critical severity 6

Medium severity 6

Minor severity 6

Potential gas issue with transfers in Istanbul 6

Token granularity is not respected 8

Enhancements 9

Code does nothing in function finalize of USDTieredSTO 9

Unnecessary imports 10

Observations 10

Conclusion 12

Appendix - Modules 13

Organization 13

USDTieredSTO 14

CappedSTO 15

RestrictedPartialSaleTM 16

Page 2

Polymath Core Audit
November 2019

Introduction
CoinFabrik was asked to audit the contracts for the Polymath project. Firstly, we will
provide a summary of our discoveries and secondly, we will show the details of our
findings.

Summary
The contracts audited are from the Polymath core repository at
https://github.com/PolymathNetwork/polymath-core/tree/dev-3.1.0. The audit is
based on the commit bdb055769dd87a09327c6200aed5d994ab0237e8, and
updated to reflect changes at d083b134f562108f83c852ba37e25c6c4ee6dc66.

The audit request specified that we looked for the changes to three modules from
dev-3.0 to dev-3.1 and the pull request for “Usage Cost” feature:

● USDTieredSTO

In directory contracts/modules/STO/USDTiered:

○ USDTieredSTO.sol

○ USDTieredSTOFactory.sol

○ USDTieredSTOStorage.sol

○ USDTieredSTOProxy.sol

There are two major changes in this version:

○ Allow pre-minting of tokens.
Tokens can be minted before the start of the token sale. This feature
can be changed only before the sale starts.

○ Allow fiat currencies other than USD.
Setting a custom oracle allows the contract to support other fiat
currencies.

● CappedSTO

In directory contracts/modules/STO/Capped:

Page 3

https://github.com/PolymathNetwork/polymath-core/tree/dev-3.1.0

Polymath Core Audit
November 2019

○ CappedSTO.sol

○ CappedSTOFactory.sol

○ CappedSTOProxy.sol

○ CappedSTOStorage.sol

There is one major change in this version:

○ Allow pre-minting of tokens.

● RestrictedPartialTransferManager

In directory contracts/modules/TransferManager/RPTM:

○ RestrictedPartialSaleTM.sol

○ RestrictedPartialSaleTMFactory.sol

○ RestrictedPartialSaleTMProxy.sol

○ RestrictedPartialSaleTMStorage.sol

this is a new module migrated from experimental that blocks partial transfer
of balances.

● “Usage Cost” feature pull request #837
https://github.com/PolymathNetwork/polymath-core/pull/837

This feature enables a module to charge a fee based on usage. Modules
already supported a setup fee when they are created.

The following analyses were performed:

● Misuse of the different call methods: call.value(), send() and transfer().

● Integer rounding errors, overflow, underflow and related usage of SafeMath
functions.

Page 4

https://github.com/PolymathNetwork/polymath-core/pull/837

Polymath Core Audit
November 2019

● Old compiler version pragmas.

● Race conditions such as reentrancy attacks or front running.

● Misuse of block timestamps, assuming anything other than them being
strictly increasing.

● Contract softlocking attacks (DoS).

● Potential gas cost of functions being over the gas limit.

● Missing function qualifiers and their misuse.

● Fallback functions with a higher gas cost than the one that a transfer or send
call allows.

● Fraudulent or erroneous code.

● Code and contract interaction complexity.

● Wrong or missing error handling.

● Overuse of transfers in a single transaction instead of using withdrawal
patterns.

● Insufficient analysis of the function input requirements.

Severity Classification
The security risk findings are evaluated according to the following classification:

● Critical: These are issues that we managed to exploit. They compromise the
system seriously. We suggest to fix them immediately.

● Medium: These are potentially exploitable issues. Even though we did not
manage to exploit them or their impact is not clear, they might represent a
security risk in the near future. We suggest to fix them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to
exploit but can be used in combination with other issues. These kinds of
issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Page 5

Polymath Core Audit
November 2019

● Enhancement: These kinds of findings do not represent a security risk. They
are best practices that we suggest to implement.

This classification is summarized in the following table:

Severity Exploitable Production
roadblock

We suggest to
fix it

Critical Yes Yes Immediately

Medium Potentially Yes As soon as
possible

Minor Unlikely No When possible

Enhancement No No Optionally

Detailed findings

Critical severity
No issues have been found.

Medium severity
No issues have been found.

Minor severity

Potential gas issue with transfers in Istanbul
Previously it was considered safe to use Solidity’s transfer and send to transfer
Ether from a contract. These primitives provide protection against reentrancy attacks
by limiting the execution of the recipient’s fallback function to a maximum gas
stipend of 2,300 gas.

The activation of the Istanbul fork of Ethereum’s mainnet on early December 2019
includes EIP 1884 which will increase the cost of several common opcodes. This EIP
will possibly affect all contracts that use a fixed amount of gas when calling another
contract because the changes in prices will modify the total gas used.

Page 6

https://ethereum.stackexchange.com/questions/19341/address-send-vs-address-transfer-best-practice-usage
https://eips.ethereum.org/EIPS/eip-1884

Polymath Core Audit
November 2019

An important class of affected contracts are the ones that use Solidity’s transfer or
send because of the fixed gas stipend. If after the fork the recipient’s fallback
function requires more gas than the gas stipend it will cause an “Out of gas” error
when called.

In the function buyWithETHRateLimited of USDTieredSTO there are two transfers
of Ether: one to the token sale wallet and another to return the excess to the user.

 // Forward ETH to issuer wallet
 wallet.transfer(spentValue);

 // Refund excess ETH to investor wallet
 msg.sender.transfer(msg.value.sub(spentValue));

The function will stop working if either wallet or msg.sender is affected. For a wallet
to be affected it has to meet two conditions:

1. There has to be a contract. This is not unusual because multisig wallets are
smart contracts and they are being used.

2. It has to be affected by EIP 1884. A recent study analyzing the impact has
found some notable examples like OpenZepplin SDK, but no popular wallet
has been found to be affected.

The owner of the security token can always change the wallet used by calling
modifyAddresses. Having an affected wallet can be fixed by the owner.

When a user tries to buy tokens with an affected contract wallet the transaction will
fail. We consider this is an unlikely case since no popular wallet has been found to
be affected yet.

Considering the future proof of the contracts it is not in the best interest to continue
using Solidity’s transfer. Since pricing of opcodes is not fixed; it will be adjusted
periodically and the gas stipend will remain fixed at 2,300 gas.

We recommend using OpenZeppelin’s sendValue:

function sendValue(address payable recipient, uint256 amount) internal {
 require(address(this).balance >= amount, "Address: insufficient balance");

 // solhint-disable-next-line avoid-call-value
 (bool success,) = recipient.call.value(amount)("");
 require(success, "Address: unable to send value, recipient may have
reverted");
}

Page 7

https://gist.github.com/ritzdorf/1c6bd72955391e831f8a397d3152b4e0
https://blog.openzeppelin.com/reentrancy-after-istanbul/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.4.0/contracts/utils/Address.sol#L61-L67

Polymath Core Audit
November 2019

We understand the potential risk is low and it is easier to suggest to the
users to switch to an unaffected wallet. To implement a solution like
OpenZeppelin's sendValue without care might have consequences such as
reentrancy attacks. During our audit the contracts examined followed the
checks-effects-interactions pattern which should eliminate possible
reentrancy attacks.

Token granularity is not respected
A security token’s granularity is the minimum unit in which a token can be divided.
Any operation that does not respect the granularity will generate an error making
the transaction fail.

The function _modifyTiers of USDTieredSTO receives an array containing the
amount of available tokens per tier and another array with the amount of tokens
available with discount. The code never verifies if these amounts respect the
granularity.

 function _modifyTiers(
 uint256[] memory _ratePerTier,
 uint256[] memory _ratePerTierDiscountPoly,
 uint256[] memory _tokensPerTierTotal,
 uint256[] memory _tokensPerTierDiscountPoly
)

If the amount of tokens available in a tier does not respect the granularity, it would
prevent the tier from being fully sold since amounts lower than the granularity
cannot be minted or transferred.

Additionally if the sum of all available tokens returned by _getTotalTokensCap does
not respect the granularity, it will fail while trying to enable the pre-minting feature.

 function allowPreMinting() external withPerm(ADMIN) {
 _allowPreMinting(_getTotalTokensCap());
 }

Page 8

Polymath Core Audit
November 2019

The owner can always fix the error by submitting new tiers with the correct
granularity through the function modifyTiers.

We suggest to add checks to _modifyTiers to enforce token’s granularity or to
round the tier total to a valid amount.

Similarly in CappedSTO the cap is never checked against the token’s granularity.

Since the cap cannot be modified after the initial configuration, it is not possible to
fix it and it will require a new deployment of the module because the sale will not be
finalized.

We recommend to enforce the token’s granularity before accepting the cap. Besides,
Polymath might provide a method that allows the owner to modify the cap before
the token sale starts, if it was configured incorrectly.

The Polymath team has added the checks for granularity at pull request
https://github.com/PolymathNetwork/polymath-core/pull/862.

Enhancements

Code does nothing in function finalize of USDTieredSTO
The function finalize has to mint/transfer unsold security tokens to the Treasury
Wallet of the token sale.

At line 359 the variable tempReturn represents the total amount of unsold tokens in
every tier.

 if (preMintAllowed) {
 if (tempReturned == securityToken.balanceOf(address(this)))
 tempReturned = securityToken.balanceOf(address(this));
 }

When the condition is satisfied tempReturned will be assigned the same value it
already contains.

These values should always be equal. It is an invariant of the contract that minted
tokens are accumulated. If they don’t match, it means that the token balance was
manipulated.

Page 9

https://github.com/PolymathNetwork/polymath-core/pull/862

Polymath Core Audit
November 2019

If the code is there to check for invalid conditions we recommend to use a require
statement instead, making detection during testing easier.

require(tempReturned = securityToken.balanceOf(address(this)), "Invalid
balance");

The Polymath team has removed the if at pull request
https://github.com/PolymathNetwork/polymath-core/pull/862 and the
balance is assigned inconditionally to tempReturned.

Unnecessary imports
The library SafeMath.sol is imported in the file RestrictedPartialSaleTM.sol.

import "openzeppelin-solidity/contracts/math/SafeMath.sol";

Similarly IPolymathRegistry is included in Module.sol.

import "../interfaces/IPolymathRegistry.sol";

Nevertheless, neither of them is used in any of the functions defined in the file. This
will not use extra resources in running time but it will increase compilation time.

We recommend removing them to keep a minimal set of dependencies.

The Polymath team has removed the unneccessary imports at
https://github.com/PolymathNetwork/polymath-core/pull/862.

Observations
1. In USDTieredSTO the owner can configure a custom oracle. Since the oracle

is not vetted by anyone, a malicious owner can use an oracle that allows him
to manipulate the price.
Polymath team told us that the functionality is there to allow the owner to
change the oracle if it is providing erroneous prices or malfunctioning.
We understand that investors must have a high degree of trust on the owner
to participate in a token sale. It is the owner’s responsibility to adequately
configure the token sale including the oracle’s address and to quickly react in
case of oracle misbehavior.

Page 10

https://github.com/PolymathNetwork/polymath-core/pull/862
https://github.com/PolymathNetwork/polymath-core/pull/862

Polymath Core Audit
November 2019

We agree that no change is necessary and the oracles functions as it is
expected.

2. In function _modifyTiers when pre-minting is enabled and tiers are modified it
might cause new tokens to be minted or deleted but no events are generated.
It might be useful to generate an event when it changes.
The Polymath team has communicated to us that due to the contract size
being too close to the 24 Kbytes limit it will not implement this suggestion.
Whenever tiers are updated with the function modifyTiers the event
SetTiers is emitted with the data from tiers. If pre-minting is active and
tokens are issued or redeemed the corresponding event Issued or
Redeemed is emitted by the security token contract.

3. Function getCustomOracleAddress in USDTieredSTO implicitly returns the
zero address when called with FundRaiseType.SC. We recommend to
document such behavior.
The behavior has been documented at pull request
https://github.com/PolymathNetwork/polymath-core/pull/862.

4. The magic constant uint256(10) ** 18 is used in function _getTokenAmount
from CappedSTO. It is better to define it as a constant. The functions div and
mul from the library DecimalMath have a similar functionality. Polymath might
consider using them instead.
Now the contract uses the functions provided by DecimalMath
https://github.com/PolymathNetwork/polymath-core/pull/862.

5. The constructor in DummySTOFactory calls UpgradableModuleFactory with
version 3.0.0.
It was updated to version 3.1.0 at pull request
https://github.com/PolymathNetwork/polymath-core/pull/862.

6. Some functions have been declared as public but they were declared
previously in a base contract as external. For example changeUsageCost in
ModuleFactory.sol and changeAllowBeneficialInvestments in CappedSTO.sol.
We recommend to always respect the declaration to minimize possible
problems in a future refactorization.
It was fixed so the functions have the proper access qualifier pull request
https://github.com/PolymathNetwork/polymath-core/pull/862.

7. Some variables don’t have an access qualifier like initialVersion, typesData
and tagsData in ModuleFactory.sol, oracleKeys in USDTieredSTOStorage.sol.
We recommend to always use the correct access qualifier.

Page 11

https://github.com/PolymathNetwork/polymath-core/pull/862
https://github.com/PolymathNetwork/polymath-core/pull/862
https://github.com/PolymathNetwork/polymath-core/pull/862
https://github.com/PolymathNetwork/polymath-core/pull/862

Polymath Core Audit
November 2019

It was fixed so variables have the correct qualifier at pull request
https://github.com/PolymathNetwork/polymath-core/pull/862.

Conclusion
The audited contracts are simple but they have complex dependencies, making
interactions with other contracts more complicated. The contracts are well
documented.

We found two minor issues:

● The next Ethereum fork “Istanbul” changes opcodes pricing making some
transfers to fail with an out of gas error in an affected wallet.

● In USDTieredSTO it is possible to configure tokens amounts that do not
respect the token’s granularity.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Polymath Core project since CoinFabrik has not reviewed its
platform. Moreover, it does not provide a smart contract code faultlessness
guarantee.

Page 12

https://github.com/PolymathNetwork/polymath-core/pull/862

Polymath Core Audit
November 2019

Appendix - Modules

Organization
The modules are split into four contracts:

1. Logic component. It contains the logic of the module which need to be
deployed just once per version.

2. Storage component. It contains the storage of the module. Every instance of
the module will contain one storage component.

3. Factory component. It is responsible for deploying an instance of the
component. It is also responsible for upgrades to the contract logic.

4. Proxy component. It is the component that will link the logic and storage
component.

This division allows to deploy a lighter component per instance that will contain only
the storage. The heavier logic is deployed only once and, using the proxy, it will be
shared by all instances.

Following are simplified dependency graphs of the audited modules.

■ Full lines indicate inheritance
■ Dotted lines are library dependencies
■ Dashed lines are factory relationship

Page 13

Polymath Core Audit
November 2019

USDTieredSTO
It provides a token offering
to have several tiers each
one with its own token
price and available tokens,
with the tier limit in a fiat
currency.

Page 14

Polymath Core Audit
November 2019

CappedSTO
This module provides a
cap for the token offering.
Purchases above the limit
will be ignored.

Page 15

Polymath Core Audit
November 2019

RestrictedPartialSaleTM
The module enables the
owner to limit the partial sale
of tokens, only the full balance
can be transferred. The owner
can allow certain addresses to
make partial transfers.

Page 16

